The realization space is
  [1   1   0   1    0   0           x2                   1            1                          x2    1]
  [1   0   1   0    1   0   -x1^2 + x2                  x1   -x1^2 + x2                  -x1^2 + x2   x1]
  [0   0   0   1   -1   1           x2   -x1^2 - x1 + 2*x2           x2   -x1^2*x2 - x1*x2 + 2*x2^2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[x1^3 - x1^2 - 2*x1*x2 - x1 + 2*x2, x1^2 + x1 - x2, x1^3*x2 + x1^2 - 2*x1*x2^2 + x1*x2 + x2^2 - x2, x1^2*x2 + x1^2 + 2*x1*x2 - x2^2 - x2, x1^2 + x1*x2 - x2, x1^2 + x1 - 2*x2 + 1, x2, x2 - 1, x1 - 1, x1, x1^2 + x1 - 1, x1^2 - x2, x1^2 + x1*x2 + x2^2 - 2*x2, x1 + x2 - 1, x1 + x2, x1^4 + x1^3 - 3*x1^2*x2 + 2*x1^2 - x1*x2 + x1 + 2*x2^2 - 2*x2, x1^2*x2 + x1*x2 - 2*x2^2 + 2*x2 - 1, x1^2 + x1 - 2*x2, x1^2*x2 + x1^2 + x1*x2 - 2*x2^2, x1^2*x2 + x1^2 + x1*x2 - 2*x2^2 - x2, x1^2 - 2*x2 + 1, x1^2 - 2*x2, x1^2 - x2 + 1]